

Influence of different rotational speeds on the structural and optical properties of CsPbBr_3 perovskite films

YAXIN CHEN¹, FEI ZHAO^{2,*}, PEIZHI YANG³

¹*School of Electrical and Electronic Engineering, Anhui Institute of Information Technology, Wuhu 241000, China*

²*School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou 213032, China*

³*College of Energy and Environmental Science, Yunnan Normal University, Kunming 650500, China*

The all-inorganic CsPbBr_3 perovskite film has attracted widespread attention from the academic community due to its excellent air and thermal stability. However, the grain growth of CsPbBr_3 perovskite film is uneven. Here, high-quality CsPbBr_3 perovskite film was successfully prepared by adjusting the rotational speed. When the rotational speed increases from 1000rpm to 2000rpm, CsPbBr_3 perovskite film exhibits higher crystallinity, better uniformity, larger average grain size (583nm), and smaller optical band gap (2.341eV). As the rotational speed further increases to 3000rpm, the crystallinity and uniformity of CsPbBr_3 perovskite film deteriorate and its average grain size decreases and its optical band gap increases. Therefore, the optimal rotational speed is 2000rpm under the condition of this experiment.

(Received April 23, 2025; accepted December 4, 2025)

Keywords: CsPbBr_3 , Crystallinity, Uniformity, Optical band gap

1. Introduction

In recent years, all-inorganic cesium-based perovskites have garnered significant attention from researchers due to their high absorption coefficients, tunable optical band gaps, and excellent thermal stability [1-3]. Among these all-inorganic cesium-based perovskites, the most prominent members include CsPbI_3 , CsPbI_2Br , CsPbBr_2I , and CsPbBr_3 [4-7]. These materials are primarily applied in the field of solar cells. Among the aforementioned perovskites, CsPbI_3 exhibits the smallest optical band gap (1.73eV), which maximizes the utilization of the solar spectrum. However, CsPbI_3 suffers from a relatively low tolerance factor, leading to poor thermal stability [8-10]. The phase transitions in CsPbI_3 can be readily observed at room temperature. In comparison, CsPbI_2Br demonstrates an improved tolerance factor and mitigates phase instability issues [11]. Additionally, CsPbI_2Br possesses a relatively low optical bandgap (1.9eV) while maintaining good thermal stability. Nevertheless, CsPbI_2Br exhibits poor stability

under high humidity conditions, which remains a significant barrier to practical applications [12]. CsPbBr_2I shows significantly enhanced stability under high humidity environments compared to CsPbI_2Br [13].

Among all-inorganic cesium-based perovskites, CsPbBr_3 stands out for its superior thermal and air stability, making it particularly suitable for applications in solar cells [14-18]. Currently, the primary method for fabricating CsPbBr_3 perovskite film is the solution spin-coating technique. The preparation process of this method is simple and the cost is low. In previous work, we deposited CsPbBr_3 perovskite films by adjusting the number of CsBr spin-coating layers [19]. However, the uniformity of the deposited CsPbBr_3 film requires further improvement. To date, there are relatively few reports on the effects of different spin-coating speeds on the structural and optical properties of CsPbBr_3 perovskite films. In this study, we deposited CsPbBr_3 perovskite films by varying the spin-coating speeds and investigated the influence of different speeds on the crystallinity, uniformity, average grain size, and optical band gap of

the films. The results indicate that among the samples prepared at different spin-coating speeds (1000rpm, 2000rpm, and 3000rpm), the sample prepared at 2000rpm exhibits the best overall performance.

2. Experimental methods

2.1. Film preparation

The CsPbBr₃ perovskite films were fabricated using a solution spin-coating method. The detailed experimental procedures are as follows. Firstly, 367mg PbBr₂ powder was dissolved in 1 ml dimethylformamide (DMF) solution. Subsequently, the precursor solution was spin-coated onto the FTO substrate to obtain PbBr₂ films. The spin-coating speeds were adjusted to 1000rpm, 2000rpm and 3000rpm, respectively. The spin-coating duration was adjusted to 30s. Subsequently, the obtained PbBr₂ films were heated at 90°C for 30min. Thereafter, 1 ml anhydrous methanol with 14.9mg CsBr powder was spin-coated onto the PbBr₂ layer. The rotational speed and time for this step were set to 2000rpm and 30s, respectively. Then, the films were annealed at 250°C for 5min. This process was repeated for several times. Finally, the high-quality CsPbBr₃ film was obtained. It is noteworthy that the entire fabrication process of CsPbBr₃ perovskite film was conducted under ambient atmospheric conditions.

2.2. Characterizations

The crystal structure and composition of the CsPbBr₃ films were examined with an X-ray diffraction (XRD). The surface morphologies of the CsPbBr₃ films were characterized via scanning electron microscopy (SEM). The X-ray photoelectron spectroscopy (XPS) was measured. In addition, the absorption rate of the CsPbBr₃ sample was obtained by a UV spectrophotometer.

3. Results and discussions

3.1. Structural analysis

Fig. 1a shows XRD spectra of CsPbBr₃ films based on different rotational speeds. From Fig. 1a, it can be observed that two distinct diffraction peaks are present at 21.76° and 30.81 °C, corresponding to the (110) and (200) crystallographic planes, respectively [19]. Interestingly, the diffraction peak intensities of the (110) and (200) planes are not consistent, which is attributed to the preferential orientation growth within the CsPbBr₃ film. Additionally, a diffraction peak is observed at 26.56 °C, which corresponds to the crystallographic plane of the FTO substrate [19]. In addition, it can be observed that the peak positions of (110) and (200) crystallographic planes of the samples prepared at different rotational speeds change, which is due to the influence of the surrounding environment during the XRD test. Fig. 1b shows peak intensity images of (110) for CsPbBr₃ films based on different rotational speeds. The sample processed at 2000 rpm exhibits the highest intensity of the (110) peak compared with those processed at 1000 rpm and 3000 rpm. Fig. 1c shows peak intensity images of (200) for CsPbBr₃ films based on different rotational speeds. When the rotational speed increases from 1000rpm to 2000rpm, the peak intensity of the (200) crystallographic plane is enhanced. However, as the rotational speed further increases to 3000rpm, the peak intensity of the (200) crystallographic plane begins to weaken. The enhancement in the diffraction peak intensity of the (110) crystallographic plane and (200) crystallographic plane indicates improved crystallinity, while the weakening of the peak intensity suggests a deterioration in crystallinity. Therefore, the CsPbBr₃ film exhibits optimal crystallinity at a rotational speed of 2000rpm. Fig. 1d shows peak intensity images of FTO crystallographic plane for CsPbBr₃ films based on various rotational speeds. As shown in Fig. 1d, when the rotational speed increases from 1000rpm to 2000rpm, the peak intensity of FTO crystallographic plane increases. However, when the rotational speed further increases to 3000rpm, the peak intensity of FTO crystallographic plane decreases. It is well-known that samples prepared on identical FTO substrates should exhibit consistent FTO crystallographic plane intensities by XRD test. Interestingly, the aforementioned experimental results reveal inconsistencies in the FTO crystallographic plane

intensities. This phenomenon can be attributed to the presence of a CsPbBr_3 crystallographic plane at 26.56 °C. For samples processed at different rotational speeds, the intensity of the CsPbBr_3 crystallographic plane at

26.56 °C varies. Consequently, the diffraction peak intensities observed at 26.56 °C in Fig. 1d exhibit discrepancies.

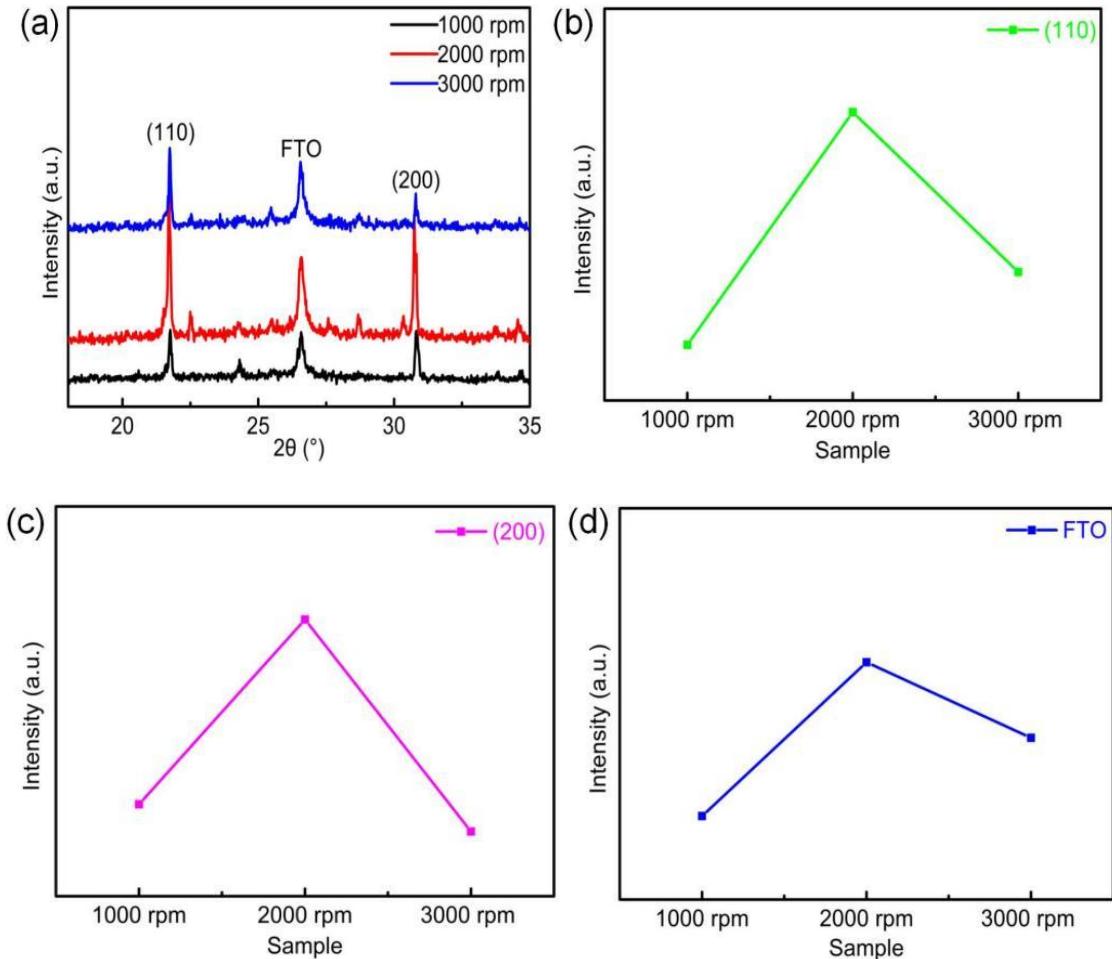


Fig. 1. (a) XRD spectra of CsPbBr_3 films based on different rotational speeds. Peak intensity images of (b) (110) crystallographic plane, (c) (200) crystallographic plane and (d) FTO crystallographic plane for CsPbBr_3 films based on different rotational speeds (colour online)

Fig. 2a-c show SEM surface images of CsPbBr_3 film with different rotational speeds. From Fig. 2a, it is evident that the grain distribution on the surface of the CsPbBr_3 film prepared at 1000 rpm is inhomogeneous. In contrast, Fig. 2b demonstrates that the grain distribution on the surface of the CsPbBr_3 film fabricated at 2000 rpm is more uniform. Nevertheless, as shown in Fig. 2c, the surface grain uniformity of the CsPbBr_3 film prepared at 3000 rpm decreases. Table 1 shows average grain size of CsPbBr_3 films based on various rotational speeds. As the

rotational speed increases from 1000 rpm to 2000 rpm, the average grain size of the CsPbBr_3 film improves from 405 nm to 583 nm. Nevertheless, when the rotational speed further increases to 3000 rpm, the average grain size of the CsPbBr_3 film reduces to 437 nm. Therefore, the CsPbBr_3 film prepared at a rotational speed of 3000 rpm achieves optimal uniformity and the maximum average grain size. The underlying reason for the variation in the average grain size is that the reaction between the PbBr_2 layer and the CsBr layer is

insufficient at a rotational speed of 1000rpm, resulting in the formation of a weaker CsPbBr_3 phase and slower grain growth. When the rotational speed increases to 2000rpm, the reaction between the PbBr_2 layer and the CsBr layer becomes more complete, leading to the formation of a stronger CsPbBr_3 phase and faster grain

growth. However, as the rotational speed further increases to 3000rpm, the reaction between the PbBr_2 layer and the CsBr layer becomes insufficient again, resulting in a weaker CsPbBr_3 phase and slower grain growth.

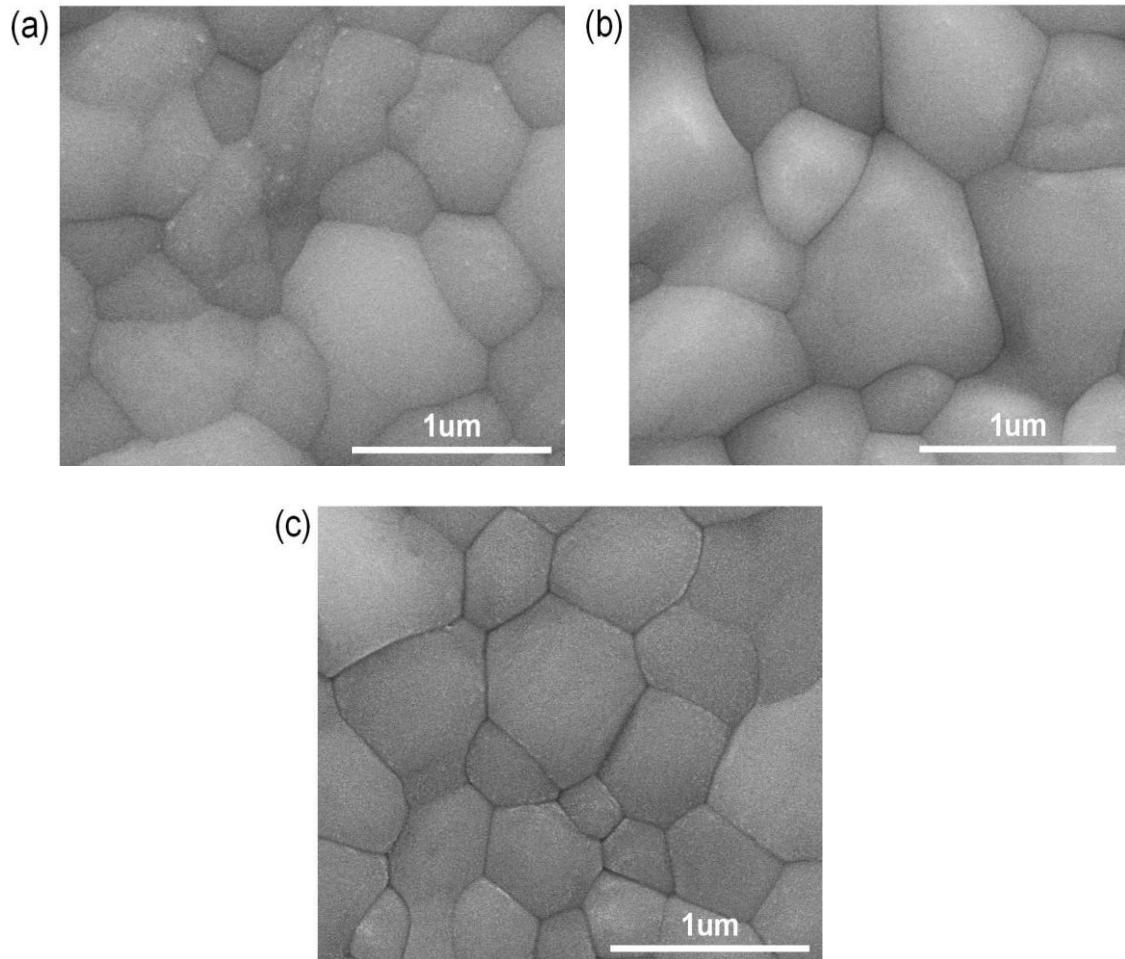


Fig. 2. SEM surface images of CsPbBr_3 film with (a) 1000rpm, (b) 2000rpm and (c) 3000rpm (colour online)

Table 1. Average grain sizes of CsPbBr_3 films based on different rotational speeds

Sample	Average grain size
1000 rpm	405 nm
2000 rpm	583 nm
3000 rpm	437 nm

Fig. 3a-c shows Cs spectra, Pb spectra and Br spectra of CsPbBr_3 films prepared at 2000rpm. From Fig. 3a-c, it can be seen that the CsPbBr_3 sample contains Cs, Pb and Br elements, indicating that there are no other impurity elements inside the prepared sample.

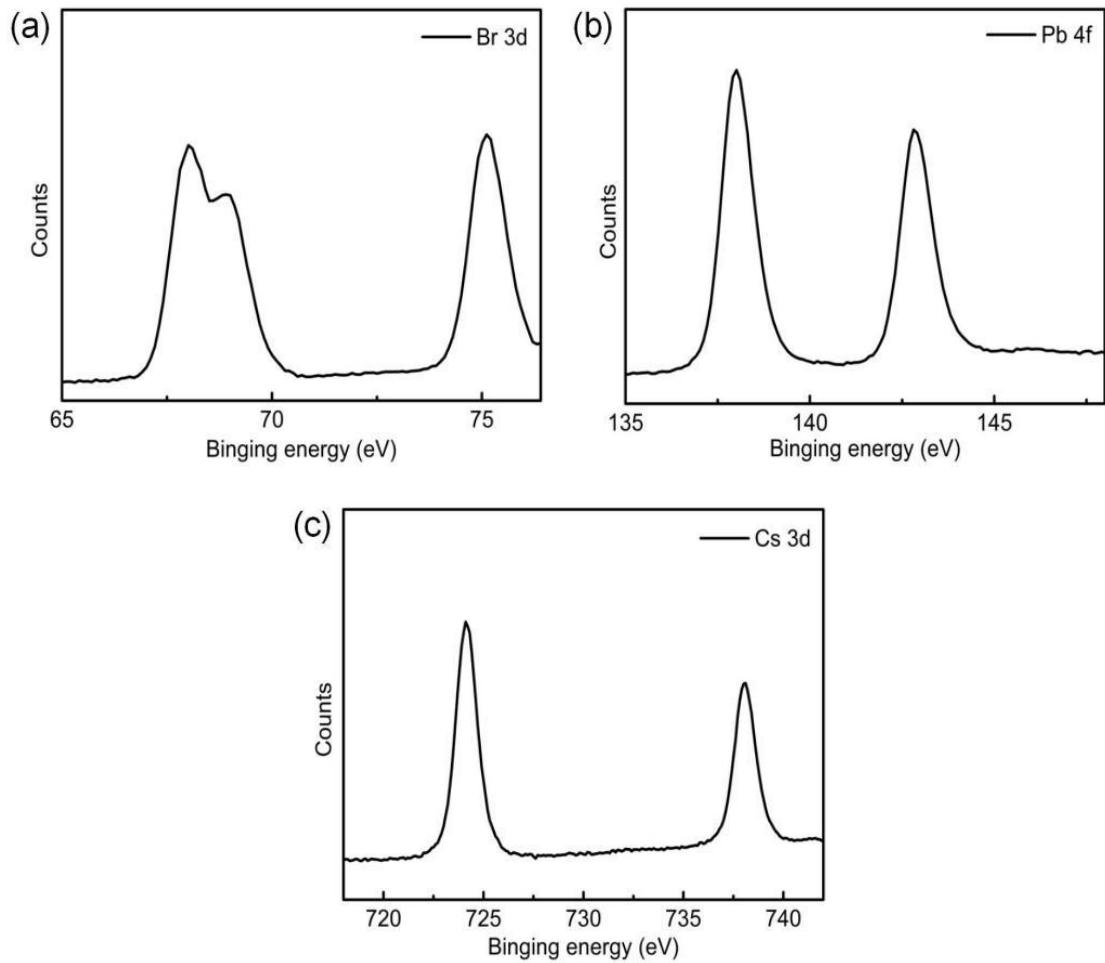


Fig. 3. (a) Br 3d spectra, (b) Pb 4f spectra and (c) Cs 3d spectra of CsPbBr_3 films prepared at 2000rpm

3.2. Analysis of optical properties

Fig. 4a shows absorption spectra of CsPbBr_3 films based on different rotational speeds. From Fig. 4a, it can be observed that the CsPbBr_3 film prepared at 2000rpm possesses a higher absorption rate than that of CsPbBr_3 film prepared at 1000rpm, implying that the CsPbBr_3 film fabricated at 2000rpm is capable of absorbing more solar energy. Nevertheless, the absorption rate of the CsPbBr_3 film prepared at 3000rpm declines, indicating a decrease in the absorbed solar energy. Thus, the CsPbBr_3 film prepared at 2000rpm achieves the highest absorption rate. Fig. 4b shows the relationship diagram between $h\nu$ and $(ah\nu)^2$ for samples with different rotational speeds. The optical band gap of the CsPbBr_3 film was determined by further analysis of the data from Fig. 4b.

Fig. 4c shows optical band gaps of CsPbBr_3 films based on various rotational speeds. As illustrated in Fig. 4c, the CsPbBr_3 film prepared at 1000rpm possesses an optical band gap of 2.363eV, whereas the film fabricated at 2000rpm shows a smaller optical band gap of 2.341eV. Nevertheless, when the spin speed is too high (3000rpm), the optical band gap of the CsPbBr_3 film becomes larger. The decrease in the optical band gap of the CsPbBr_3 film indicates its capability to absorb a wider range of the light spectrum [20-26]. In contrast, the increase in the optical band gap suggests a reduction in the range of the absorption spectrum. Consequently, the CsPbBr_3 film prepared at 2000rpm exhibits the highest absorption rate and the smallest optical band gap.

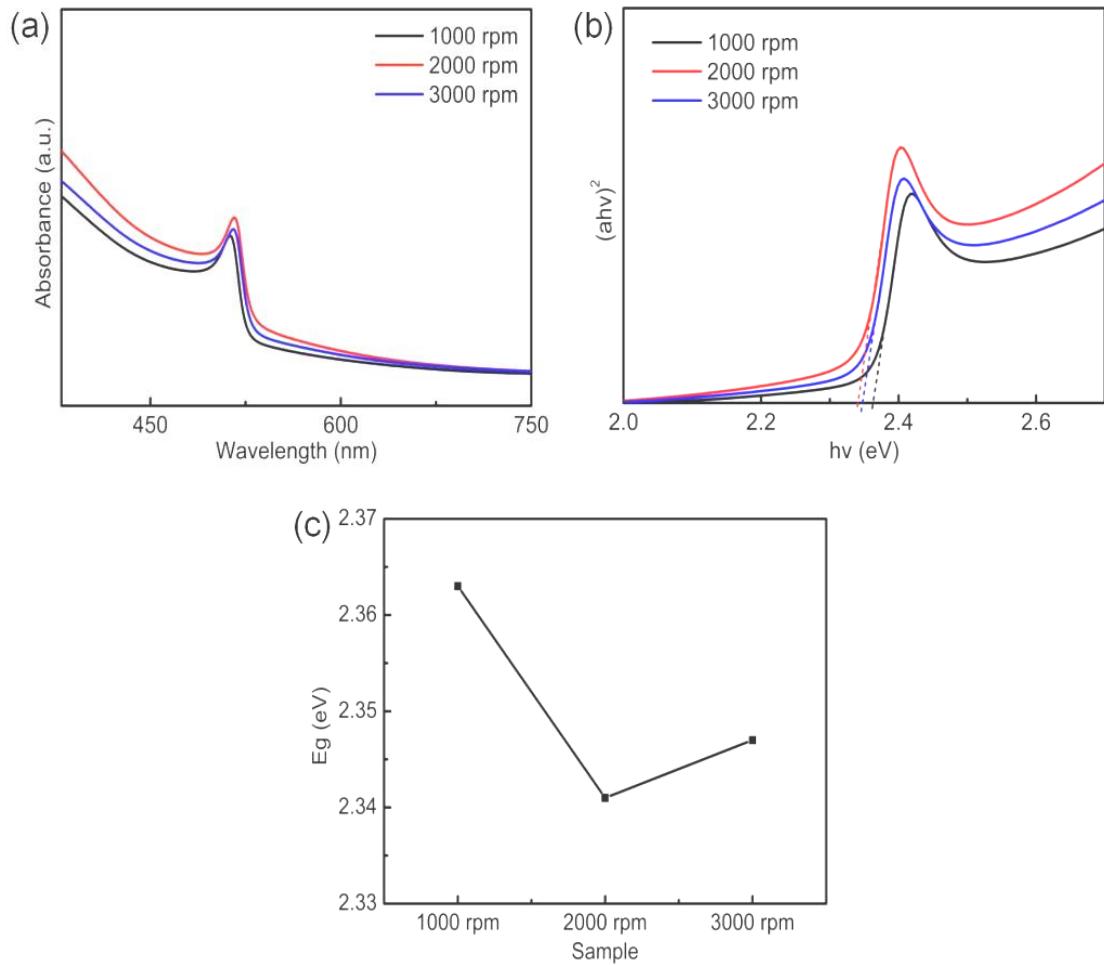


Fig. 4 (a) Absorption spectra of CsPbBr_3 films based on different rotational speeds. (b) The relationship diagram between $h\nu$ and $(ah\nu)^2$ for samples with different rotational speeds. (c) Optical band gaps of CsPbBr_3 films based on various rotational speeds (colour online)

4. Conclusions

The high-quality CsPbBr_3 perovskite samples were successfully deposited via changing the rotational speed. The research results indicate that CsPbBr_3 sample with 2000 rpm has optimum crystallinity, best uniformity, maximum average grain size (583 nm) and minimum optical band gap (2.341 eV) for CsPbBr_3 samples with 1000 rpm, 2000 rpm and 3000 rpm. This work provides a new method for preparing high-quality CsPbBr_3 perovskite films.

Acknowledgements

This work was financed by the Changzhou Scientific and Technological Program grant (Grant No. CJ20250087), Project for Building a Science and Technology Innovation Center Facing South Asia and Southeast Asia (202403AP140015), the Key Applied Basic Research Program of Yunnan Province (202201AS070023) and Yunnan Revitalization Talent Support Program, the Spring City Plan: The High-level Talent Promotion and Training Project of Kunming (2022SCP005).

References

[1] C. Liu, W. Li, C. Zhang, Y. Ma, J. Fan, Y. Mai, *J. Am. Chem. Soc.* **140**, 3825 (2018).

[2] W. Xu, J. Hu, Q. Yang, Y. Lian, M. Zheng, E. Du, *J. Alloy. Compd.* **988**, 174275 (2024).

[3] F. Fei, Y. Liao, Y. Xu, S. Wang, L. Li, X. Dong, X. Zhou, J. Gao, K. Wang, N. Yuan, J. Ding, *ACS Appl. Mater. Interfaces* **16**, 24760 (2024).

[4] F. Zhao, Y. Guo, X. Wang, J. Tao, J. Jiang, Z. Hu, J. Chu, *Sol. Energy* **191**, 263 (2019).

[5] D. Wang, W. Li, Z. Du, G. Li, W. Sun, J. Wu, Z. Lan, *J. Mater. Chem. C* **8**, 1649 (2020).

[6] X. Chang, J. Fang, Y. Fan, T. Luo, H. Su, Y. Zhang, J. Lu, L. Tsetseris, T. Anthopoulos, S. Liu, K. Zhao, *Adv. Mater.* **32**, 2001243 (2020).

[7] X. Li, B. He, Z. Gong, J. Zhu, W. Zhang, H. Chen, Y. Duan, Q. Tang, *Sol. RRL* **4**, 2000362 (2020).

[8] A. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, D. T. Moore, J. A. Christians, T. Chakrabarti, J. M. Luther, *Science* **354**, 92 (2016).

[9] C. Wang, A. S. Chesman, J.J. Jasieniak, *Chem. Commun.* **53**, 232 (2017).

[10] T. Zhang, M. I. Dar, G. Li, F. Xu, N. Guo, Y. Zhao, *Sci. Adv.* **3**, 1700841 (2017).

[11] Y. Guo, F. Zhao, J. Tao, J. Jiang, J. Zhang, J. Yang, Z. Hu, J. Chu, *ChemSusChem* **12**, 983 (2019).

[12] Y. Li, Y. Wang, T. Zhang, S. Yoriya, P. Kumnorkaew, S. Chen, X. Guo, Y. Zhao, *Chem. Commun.* **54**, 9809 (2018).

[13] Y. Guo, F. Zhao, X. Wang, J. Tao, D. Zheng, J. Jiang, Z. Hu, J. Chu, *Sol. Energy Mater. Sol. Cell.* **221**, 110918 (2021).

[14] G. Liao, J. Duan, Y. Zhao, Q. Tang, *Sol. Energy* **171**, 279 (2018).

[15] X. Zhang, Z. Jin, J. Zhang, D. Bai, H. Bian, K. Wang, J. Sun, Q. Wang, S.F. Liu, *ACS Appl. Mater. Interfaces* **10**, 7145 (2018).

[16] H. Li, G. Tong, T. Chen, H. Zhu, G. Li, Y. Chang, L. Wang, Y. Jiang, *J. Mater. Chem. A* **6**, 14255 (2018).

[17] J. Zhu, B. He, Z. Gong, Y. Ding, W. Zhang, X. Li, Z. Zong, H. Chen, Q. Tang, *ChemSusChem* **13**, 1834 (2020).

[18] Y. Xu, J. Duan, X. Yang, J. Du, Y. Wang, Y. Duan, Q. Tang, *J. Mater. Chem. A* **8**, 11859 (2020).

[19] F. Zhao, Y. Guo, J. Tao, Z. Li, J. Jiang, J. Chu, *Appl. Optics* **59**, 5481 (2020).

[20] J. Liang, C. Wang, Y. Wang, Z. Xu, Z. Lu, Y. Ma, H. Zhu, Y. Hu, C. Xiao, X. Yi, G. Zhu, H. Lv, L. Ma, T. Chen, Z. Tie, Z. Jin, J. Liu, *J. Am. Chem. Soc.* **138**, 15829 (2016).

[21] P. Teng, X. Han, J. Li, Y. Xu, L. Kang, Y. Wang, Y. Yang, T. Yu, *ACS Appl. Mater. Interfaces* **10**, 9541 (2018).

[22] X. Liu, X. Tan, Z. Liu, H. Ye, B. Sun, T. Shi, Z. Tang, G. Liao, *Nano Energy* **56**, 184 (2019).

[23] J. Duan, Y. Zhao, X. Yang, Y. Wang, B. He, Q. Tang, *Adv. Energy Mater.* **8**, 1802346 (2018).

[24] J. Gao, F. Fei, Y. Xu, S. Wang, Y. Li, K. Du, H. Sun, X. Dong, N. Yuan, L. Li, J. Ding, *ACS Appl. Mater. Interfaces* **16**, 38017 (2024).

[25] L. Gu, M. Chen, X. Liu, D. Chen, Y. Gu, S. Wang, *Sol. RRL* **8**, 2301001 (2024).

[26] L. Gu, M. Chen, X. Liu, Y. Gu, D. Chen, S. Wang, *ACS Appl. Mater. Interfaces* **17**, 991 (2024).

*Corresponding author: fzhaobs@126.com